Video-Based Face Recognition Using a Probabilistic Graphical Model
نویسندگان
چکیده
This paper presents a probabilistic graphical model to formulate and deal with video-based face recognition. Our formulation divides the problem into two parts: one for likelihood measure and the other for transition measure. The likelihood measure can be regarded as a traditional task of face recognition within a single image, i.e., to recognize who the current observing face image is. In our work, two-dimensional linear discriminant analysis (2DLDA) is employed to judge the likelihood measure. Moreover, the transition measure estimates the probability of the change from a false recognition at the previous stage to the correct person at the current stage. Our approach for transition measure does not only consider the visual difference among persons according to the training face images but also involve prior information of the pose change in video frames. We also provide several experiments to show the efficiency of our proposed approach in this paper.
منابع مشابه
Video-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملمدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره
In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملPose Robust Video - Based Face Recognition
Researchers have been working on human face recognition for decades. Face recognition is hard due to different types of variations in face images, such as pose, illumination and expression, among which pose variation is the hardest one to deal with. To improve face recognition, this thesis presents an integrated approach to performing pose robust video-based face tracking and recognition by usi...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کامل